墨香宝库 -2015年考研数学高分复习全书(数学一/二)
本书资料更新时间:2025-01-18 21:24:59

2015年考研数学高分复习全书(数学一/二) 下载 pdf 2025 网盘 epub 在线 mobi 免费

2015年考研数学高分复习全书(数学一/二)精美图片
》2015年考研数学高分复习全书(数学一/二)电子书籍版权问题 请点击这里查看《

2015年考研数学高分复习全书(数学一/二)书籍详细信息

  • ISBN:9787300187952
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2014-01
  • 页数:暂无页数
  • 价格:54.50
  • 纸张:胶版纸
  • 装帧:平装
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看
  • 更新时间:2025-01-18 21:24:59

内容简介:

  《2015年考研数学高分复习全书(数学一、二)》编写特点如下:

一、考试内容提要——对照最直接

明确考试内容与要求,才能有的放矢。本书在每章的第一节对*考研大纲要求的基本概念、基本原理和基本方法都做了详尽的讲解,并指出注意事项。作者认为这对于考前进行全面、系统的复习是非常必要的。

二、重要公式与结论(补充注释与重要结论)——总结最完善

针对每一章中的重点、难点以及容易混淆的概念进行诠释,并归纳总结每一章的重要定理、公式和结论,特别是对一些重要的中间结论或者隐含条件进行了归纳总结。目的在于希望考生通过系统复习后,一见到此类问题,就能立刻联想到考题实际期望考查的是哪一方面的知识点,从而使考生站在一个更高的层次上去分析问题、解决问题,达到认识和理解的新境界。考生是否具备了这种能力,对考研能否取得成功和获得高分是至关重要的。

三、典型题型与例题分析——题型最丰富

对数学课程来说,题目是无穷的,但题型是有限的。作者通过精心编制和设计许多新题型,使得本书几乎囊括了考研数学所涉及的所有题型,并逐一进行分析,给出了解题方法和规律。另外,借助于许多重要经典例题的评注,本书能够帮助读者更好地把握典型例题的典型处理方法和各种可能的延伸,从而使读者能够举一反三,触类旁通。

四、习题精选与详细解答——选题最典型

要想真正掌握一门课程内容并通过相关考试,做一定数量的习题是必不可少的。为此,作者按照填空题、选择题和解答题的顺序对应各种题型选编了相当数量的习题,供读者模拟练习之用,希望读者尽可能独立地完成习题。


书籍目录:

第一部分 高等数学

第一章 函数、极限与连续

1 知识要点精讲

2 重要公式与结论

3 典型题型与例题分析

题型一 函数关系的建立

题型二 考查函数的特性

题型三 求函数极限

题型四 求数列极限

题型五 求解含参变量的极限

题型六 已知极限,求待定参数、函数值、导数及函数

题型七 无穷小比较

题型八 判断函数的连续性与间断点的类型

题型九 确定方程f(x)=0的根

题型十 综合题

习题精选一

习题精选一参考答案

第二章 导数与微分

1 知识要点精讲

2 重要公式与结论

3 典型题型与例题分析

题型一 利用导数定义解题

题型二 求分段函数的导数

题型三 导数在几何上的应用

题型四 变限积分求导

题型五 利用导数公式与运算法则求导

题型六 综合题

习题精选二

习题精选二参考答案

第三章 微分中值定理与导数的应用

1 知识要点精讲

2 典型题型与例题分析

题型一 证明存在ξ,使f(ξ)=0

题型二 证明存在ξ,使f(n)(ξ)=0(n=1,2,…)

题型三 证明存在ξ,使G(ξ,f(ξ),f′(ξ),…)=0

题型四 直接用拉格朗日中值定理或柯西中值定理证明

题型五 双介值问题,要证存在ξ,η使G(f′(ξ),f′(η),…)=0

题型六 证明存在ξ,使得f(n)(ξ)=k(k≠0)

题型七 有关介值的不等式证明

题型八 隐含介值问题

题型九 不等式的证明

题型十 利用导数证明函数恒等式

题型十一 利用导数判别函数的单调性

题型十二 利用导数研究函数的极值与最值

题型十三 曲线的凹凸性与拐点

题型十四 求曲线的渐近线

题型十五 函数作图

题型十六 求曲率与曲率半径

题型十七 综合题

习题精选三

习题精选三参考答案

第四章 一元函数积分学

1 知识要点精讲

2 重要公式与结论

3 典型题型与例题分析

题型一 计算不定积分

题型二 不定积分综合题

题型三 有关定积分的概念与性质的问题

题型四 利用基本方法(牛顿莱布尼茨公式,换元积分法,分部积分法)计算定积分

题型五 对称区间上的积分

题型六 涉及变限积分的问题

题型七 定积分循环计算法

……

第二部分 线性代数

第三部分 概率论与数理统计


作者介绍:

  黄先开,全国考研数学领军人物,中国科学院数学博士,教授,研究生导师,教育部高等学校数学教学指导委员会委员,北京市优秀青年骨干教师,有突出贡献的部级青年专家,哈佛大学高级访问学者。在国内外重要学术刊物上发表论文40多篇,其中多篇被国际三大检索系统(SCI,EI,ISTP)收录。出版专著三部,主编考研著作多部,承担国家自然科学基金项目三项,省部级项目六项。具有扎实的理论基础和丰富的教学经验,讲课思路清晰,重点突出,逻辑性强,融会贯通,辅导效果极佳,深受全国广大考生拥戴。

  曹显兵,全国考研数学领军人物,中国科学院数学博士,北京市教学名师、教授、研究生导师,美国《数学评论》评论员,北京市数学会理事,北京市精品课程负责人。在科研上已承担国家自然科学基金项目三项,省部级项目五项。在国内外重要学术刊物上发表论文40多篇,其中10多篇被国际三大检索系统(SCI,EI,ISTP)收录。独立完成专著三部,主编考研著作多部。其授课充满激情,系统性强,重点、要点突出,善于归纳总结,讲解透彻,预测性强,直击考点,深受全国广大考生推崇。


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

  第一章函数、极限与连续

  [1]§

  1知识要点精讲

  函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:limx→0sinxx=1,limx→∞1+1xx=e函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质

  一函数

  1?函数的概念及表示法

  设x和y是两个变量(均在实数R内取值),D是一个给定的非空数集,如果对于每个数x∈D,按照一定的法则,变量y总有一个确定的值和它对应,则称变量y是变量x的函数,记作y=f(x),其中D叫做函数y=f(x)的定义域,x叫做自变量,y叫做因变量,函数值f(x)的全体所构成的集合称为函数f的值域.表示法有:公式法、表格法、图形法等.

  要注意函数定义中的两个要素:

  (1)定义域D:它表示x的取值范围,由函数对应法则或实际问题的要求来确定.

  (2)对应法则f:它表示给定x值,求y值的方法.

  因此:

  ①对于两个给定的函数,当且仅当它们的定义域和对应法则都相同时,才能说它们是相同的函数,否则它们就是不同的函数.

  ②求函数f的定义域,就是求使y的取值和运算有意义的自变量x的取值范围.

  2.函数的性态——有界性,单调性,周期性,奇偶性

  (Ⅰ)有界性

  设函数y=f(x)在区间I上有定义,如果存在正数M,对于任意x∈I,恒有|f(x)|≤M,则称函数y=f(x)在区间I上有界;如果这样的M不存在,则称函数y=f(x)在I上无界.如果存在正数M1,对于任意x∈I,恒有f(x)≤M1,则称函数y=f(x)在区间I上有上界;如果存在正数M2,对于任意x∈I,恒有f(x)≥M2,则称函数y=f(x)在区间I上有下界.易知函数f(x)在区间I上有界的充分必要条件是它在I上既有上界又有下界.

  (1)几个常见的有界函数.

  在区间(-∞,+∞)上,有

  |sinx|≤1,|cosx|≤1,|arctanx|<π2,|arccotx|<π(或0<arccotx<π).

  因此,y=sinx,y=cosx,y=arctanx,y=arccotx在区间(-∞,+∞)上有界.

  在区间[-1,1]上,有|arcsinx|≤π2,|arccosx|≤π(或0≤arccosx≤π).

  因此,y=arcsinx,y=arccosx在区间[-1,1]上有界.

  注:①函数y=f(x)有界或无界是相对于某个区间而言的.

  例如y=1x在区间(0,1)内无界,但在区间18,1上是有界的.

  ②区分无界函数和无穷大:在某一变化过程中,若f(x)为无穷大,则存在对应的区间使f(x)无界;但是若f(x)在某个区间上无界,则f(x)不一定为无穷大.

  例如y=1xsin1x在区间(0,1]上无界,但在x→0+时并不是无穷大.

  ③若函数y=f(x)在区间I上有界,则f(x)的导函数和原函数在区间I上不一定有界.

  例如y=x在[0,1]上有界,但其导函数y=12x在(0,1]上是无界的;

  y=1+cosx在(-∞,+∞)上有界,但其原函数F(x)=x+sinx在(-∞,+∞)上是无界的.

  (2)判别方法:

  方法一直接法:定义本身就是判定f(x)是否有界的一种有效方法,即对f(x),若存在M>0,使得f(x)≤M,则f(x)有界,否则无界.

  方法二若存在区间I内序列xn,使得f(xn)→∞(n→∞),则f(x)在I内无界.

  方法三间接法:①若f(x)在[a,b]连续,则f(x)在[a,b]有界.②若f(x)在(a,b)连续,且limx→a+f(x)存在,limx→b-f(x)存在,则f(x)在(a,b)有界.

  (Ⅱ)单调性

  设函数y=f(x)在区间I上有定义,如果对于?x1,x2∈I,当x1<x2时,恒有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数y=f(x)在区间I上是单调增加(或单调减小)的.若?x1,x2∈I,当x1<x2时,有f(x1)≤f(x2)(或f(x1)≥f(x2)),则称f(x)在区间I上单调不减(单调不增).

  判别方法:

  方法一利用定义:设x1>x2,计算f(x1)-f(x2),若它大于零,则单调增加;若它小于零,则单调减小.

  方法二利用导数:对可导函数y=f(x),若y′>0,则y单调增加;若y′<0,则y单调减小.

  注:单调函数的导函数和原函数都不一定仍为单调函数.例如y=x在(-∞,+∞)内单调增加,而其导函数y′=1与原函数F(x)=12x2在(-∞,+∞)内都不单调.

  (Ⅲ)周期性

  设函数f(x)的定义域为D,如果存在一个不为零的常数T,使得对于任一x∈D,有x±T∈D且f(x+T)=f(x)恒成立,则称f(x)为周期函数,T称为f(x)的周期.通常把满足上式的最小正数T称为函数f(x)的周期.

  判别方法:

  方法一利用定义:计算f(x+T)=…=f(x),则f(x)是以T为周期的函数.

  方法二间接法:利用常见周期函数的周期进行判别和计算.

  例如,由sinx,cosx的周期为2π,推知sinx,cosx,sin2x,cos2x的周期为π;由tanx,cotx的周期为π,推知|tanx|,|cotx|的周期为π,tanx2,cotx2的周期为2π.

  注:若f(x)是可导的周期函数,则它的导函数仍是周期函数,且周期不变,但它的原函数不一定仍为周期函数.

  例如f(x)=1+sinx是周期为2π的函数,其导函数f′(x)=cosx仍是周期为2π的函数,但其原函数F(x)=x-cosx不是周期函数.

  (Ⅳ)奇偶性

  设函数f(x)的定义域D关于原点对称,如果对任一x∈D,恒有f(-x)=f(x)(或-f(x)),则称函数f(x)为偶函数(或奇函数).偶函数的图形关于y轴对称,奇函数的图形关于坐标原点对称.

  判别方法:

  方法一利用定义:通过计算f(-x)=…=f(x)(-f(x)),则f(x)是偶(奇)函数.

  方法二利用运算性质:

  奇函数±奇函数=奇函数偶函数±偶函数=偶函数

  奇函数×偶函数=奇函数偶函数×偶函数=偶函数

  奇函数×奇函数=偶函数

  方法三利用导函数与原函数奇偶性:

  可导的奇函数的导函数是偶函数,例如(x3)′=3x2.

  可导的偶函数的导函数是奇函数,例如(x2)′=2x.

  连续的奇函数的任何一个原函数都是偶函数,例如f(x)=sinx,F(x)=-cosx+C.

  连续的偶函数的原函数中只有一个F(x)=∫x0f(t)dt是奇函数,例如f(x)=cosx,其全体原函数F(x)=∫cosxdx=sinx+C中只有sinx(C=0)是奇函数.

  注:①若函数的定义域关于原点不对称,则此函数既不是奇函数,也不是偶函数.

  ②设函数f(x)的定义域D关于原点对称,则f(x)一定可以表示成奇函数与偶函数的和.事实上,

  f(x)=12[f(x)-f(-x)]+12[f(x)+f(-x)],

  式中前者为奇函数,后者为偶函数.

  【例1.1】判别下列函数的奇偶性:

  (1)f(x)=ln(x+x2+1).

  (2)F(x)=∫xaf(t)dt,其中a为常数,f(x)为可积的奇函数.

  【详解】

  (1)因为

  f(-x)=ln(-x+(-x)2+1)=ln(x2+1-x)=lnx2+1-x2x2+1+x

  =-ln(x+x2+1)=-f(x),

  故f(x)=ln(x+x2+1)为奇函数.

  (2)F(-x)=∫-xaf(t)dtt=-u-∫x-af(-u)du=∫x-af(u)du

  =∫a-af(u)du+∫xaf(u)du=0+∫xaf(u)du=F(x),

  故F(x)为偶函数.

  3.复合函数

  设y=f(u),u=φ(x)为两个函数,若φ(x)的值域与f(u)的定义域有非空交集,则由y=f(u)及u=φ(x)可复合而成复合函数y=f(φ(x)),u称为中间变量.

  【例1.2】设f(x)=4-x2,|x|≤2,

  0,|x|>2,求f(f(x)).

  【详解】f(f(x))=4-f2(x),|f(x)|≤2,

  0,|f(x)|>2.

  进一步,由下列不等式确定x的取值范围,从而可得f(x)的表达式,再代入上面式子:

  (1)由|f(x)|≤2有|4-x2|≤2,

  |x|≤2或|0|≤2,

  |x|>2,即2≤|x|≤2或|x|>2.

  (2)由|f(x)|>2有|4-x2|>2,

  |x|≤2或|0|>2,

  |x|>2,即|x|<2.

  故f(f(x))=4,|x|>2,

  4-(4-x2)2,2≤|x|≤2,

  0,|x|<2.

  注:求这种分段函数的复合要“由里往外”逐层进行分析与计算.

  ……



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

编辑推荐

  一线名师授课底本,经典讲解全新奉上,全面解析大纲考试内容与考试要求,清晰明确,一目了然,总结重要公式与结论,帮助考生常记不忘,归纳典型题型讲解内容,例题分析、详解、评注环环相扣,每章配精编习题,有针对性地演练、温习。



书籍真实打分

  • 故事情节:9分

  • 人物塑造:5分

  • 主题深度:5分

  • 文字风格:6分

  • 语言运用:9分

  • 文笔流畅:6分

  • 思想传递:9分

  • 知识深度:3分

  • 知识广度:6分

  • 实用性:5分

  • 章节划分:5分

  • 结构布局:7分

  • 新颖与独特:4分

  • 情感共鸣:8分

  • 引人入胜:8分

  • 现实相关:4分

  • 沉浸感:9分

  • 事实准确性:7分

  • 文化贡献:9分


网站评分

  • 书籍多样性:5分

  • 书籍信息完全性:3分

  • 网站更新速度:9分

  • 使用便利性:5分

  • 书籍清晰度:8分

  • 书籍格式兼容性:6分

  • 是否包含广告:4分

  • 加载速度:9分

  • 安全性:4分

  • 稳定性:8分

  • 搜索功能:9分

  • 下载便捷性:8分


下载点评

  • 内容齐全(679+)
  • 内容完整(646+)
  • 收费(325+)
  • epub(307+)
  • 体验好(301+)
  • 下载快(393+)
  • 傻瓜式服务(171+)
  • 五星好评(328+)

下载评价

  • 网友 通***蕊: ( 2025-01-06 03:57:30 )

    五颗星、五颗星,大赞还觉得不错!~~

  • 网友 马***偲: ( 2025-01-03 11:44:01 )

    好 很好 非常好 无比的好 史上最好的

  • 网友 融***华: ( 2024-12-24 11:43:33 )

    下载速度还可以

  • 网友 车***波: ( 2024-12-28 04:43:38 )

    很好,下载出来的内容没有乱码。

  • 网友 宫***凡: ( 2024-12-23 21:46:02 )

    一般般,只能说收费的比免费的强不少。

  • 网友 孙***夏: ( 2024-12-31 15:16:42 )

    中评,比上不足比下有余

  • 网友 丁***菱: ( 2024-12-25 23:36:00 )

    好好好好好好好好好好好好好好好好好好好好好好好好好

  • 网友 戈***玉: ( 2024-12-21 08:56:57 )

    特别棒

  • 网友 国***舒: ( 2025-01-16 00:35:44 )

    中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到

  • 网友 冯***卉: ( 2025-01-13 20:26:21 )

    听说内置一千多万的书籍,不知道真假的

  • 网友 权***颜: ( 2025-01-09 04:36:36 )

    下载地址、格式选择、下载方式都还挺多的

  • 网友 堵***洁: ( 2025-01-13 19:45:08 )

    好用,支持

  • 网友 苍***如: ( 2025-01-10 12:22:18 )

    什么格式都有的呀。

  • 网友 曾***文: ( 2025-01-14 03:56:12 )

    五星好评哦


随机推荐